f(x)=a*b
=cos(2x-π/3)*1+cosx*cosx-sinx*sinx=cos(2x-π/3)+cos2x
=cos2xcosπ/3+sin2xsinπ/3+cos2x
=3/2cos2x+√3sin2x
=√3(√3/2cos2x+1/2sin2x)
=√3sin(2x+π/3)
∵sinx递增区间是[-π/2,π/2]
∴-π/2≤2x+π/3≤π/2 -5π/12≤x≤π/12
∴f(x)递增区间是[-5π/12,π/12]
f(x)=a*b
=cos(2x-π/3)*1+cosx*cosx-sinx*sinx=cos(2x-π/3)+cos2x
=cos2xcosπ/3+sin2xsinπ/3+cos2x
=3/2cos2x+√3sin2x
=√3(√3/2cos2x+1/2sin2x)
=√3sin(2x+π/3)
∵sinx递增区间是[-π/2,π/2]
∴-π/2≤2x+π/3≤π/2 -5π/12≤x≤π/12
∴f(x)递增区间是[-5π/12,π/12]