y=4sin(π/3-2x)=-4sin(2x-π/3 )
求原函数的增区间 :即求y=4sin(2x-π/3) 的减区间
2kπ+π/2≤2x-π/3≤2kπ+3π/2
2kπ+5π/6≤2x≤2kπ+11π/6
kπ+5π/12≤x≤kπ+11π/12
所以 函数y=sin(π/3-2x )的单调递增区间是
【kπ+5π/12,kπ+11π/12】,k∈Z
y=4sin(π/3-2x)=-4sin(2x-π/3 )
求原函数的增区间 :即求y=4sin(2x-π/3) 的减区间
2kπ+π/2≤2x-π/3≤2kπ+3π/2
2kπ+5π/6≤2x≤2kπ+11π/6
kπ+5π/12≤x≤kπ+11π/12
所以 函数y=sin(π/3-2x )的单调递增区间是
【kπ+5π/12,kπ+11π/12】,k∈Z