先看
1/n+2/n+3/n+……+(n-1)/n
=(1+2+3+……+n-1)/n
=((n-1)(n-1+1)/2)/n
=(n-1)/2
则
1/2+1/3+2/3+1/4+2/4+3/4+……+58/60+59/60
=1/2+(3-1)/2+(4-1)/2+……+(60-1)/2
=(1+2+3+……+59)/2
=(59*(59+1)/2)/2
=885
先看
1/n+2/n+3/n+……+(n-1)/n
=(1+2+3+……+n-1)/n
=((n-1)(n-1+1)/2)/n
=(n-1)/2
则
1/2+1/3+2/3+1/4+2/4+3/4+……+58/60+59/60
=1/2+(3-1)/2+(4-1)/2+……+(60-1)/2
=(1+2+3+……+59)/2
=(59*(59+1)/2)/2
=885