先对x/(x-1)+y/(1-y)=1通分,可得(x-xy+xy-y)/(x-1)(1-y)=1,整理后可得出xy+1-2y=0,进一步可得x=2-1/y.所以x-y=2-1/y-y,设f(y)=2-1/y-y,对其求导f'(y)=1/y²-1,设f'(y)=0,y=1或-1,结合x>1>y,所以y=-1,所以有
当y0,f(y)递增,
当0
先对x/(x-1)+y/(1-y)=1通分,可得(x-xy+xy-y)/(x-1)(1-y)=1,整理后可得出xy+1-2y=0,进一步可得x=2-1/y.所以x-y=2-1/y-y,设f(y)=2-1/y-y,对其求导f'(y)=1/y²-1,设f'(y)=0,y=1或-1,结合x>1>y,所以y=-1,所以有
当y0,f(y)递增,
当0