a1a2...an
= (1-1/4)(1-1/4^2).(1-1/4^n)
= (1+1/4) (1-1/4)(1-1/4^2).(1-1/4^n) / (1+1/4)
= (1+1/4^2)(1-1/4^2).(1-1/4^n) / (1+1/4)
=...
=(1-1/4^(n+1)) / (5/4)
所以即证明(1-1/4^(n+1)) / (5/4)>2/3
即证明1-1/4^(n+1)> 8/15
即证明1/4^(n+1) < 7/15
当n>=1时,有1/4^(n+1)
a1a2...an
= (1-1/4)(1-1/4^2).(1-1/4^n)
= (1+1/4) (1-1/4)(1-1/4^2).(1-1/4^n) / (1+1/4)
= (1+1/4^2)(1-1/4^2).(1-1/4^n) / (1+1/4)
=...
=(1-1/4^(n+1)) / (5/4)
所以即证明(1-1/4^(n+1)) / (5/4)>2/3
即证明1-1/4^(n+1)> 8/15
即证明1/4^(n+1) < 7/15
当n>=1时,有1/4^(n+1)