解题思路:(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;
(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°-∠BED-∠EFC=180°-∠DEB-∠EDB=∠B即可得出结论;
(3)由(2)知∠DEF=∠B,再根据等腰三角形的性质即可得出∠DEF的度数.
(1)证明:∵AB=AC,
∴∠B=∠C,
在△DBE和△ECF中,
BD=CE
∠B=∠C
BE=CF,
∴△DBE≌△ECF,
∴DE=FE,
∴△DEF是等腰三角形;
(2)∵△BDE≌△CEF,
∴∠FEC=∠BDE,
∴∠DEF=180°-∠BED-∠EFC=180°-∠DEB-∠EDB=∠B;
(3)∵由(2)知△BDE≌△CEF,
∴∠BDE=∠CEF,
∴∠CEF+∠DEF=∠BDE+∠B,
∴∠DEF=∠B,
∴AB=AC,∠A=40°,
∴∠DEF=∠B=[180−40°/2]=70°.
点评:
本题考点: 等腰三角形的判定与性质.
考点点评: 本题考查的是等腰三角形的判定与性质,熟知等腰三角形的两个底角相等是解答此题的关键.