∵a=2RsinA,b=2RsinB,c=2RsinC,
∴2RsinAcosB-2RsinBcosA=
3
5 2RsinC,
即sinAcosB-sinBcosA=
3
5 sinC,①
∵sinC=sin[π-(A+B)]=sin(A+B)=sinAcosB+cosAsinB,②
将②代入①中,整理得sinAcosB=4cosAsinB,
∴
sinA
cosA =4•
sinB
cosB ,
即tanA=4tanB;
∵tan(A-B)=
tanA-tanB
1+tanAtanB =
3tanB
1+4 tan 2 B =
3
1
tanB +4tanB ≤
3
2
4 =
3
4 ,
∴tan(A-B)的最大值为
3
4 ,
故答案为
3
4 .