过D作DG∥BC交AE于G,
则DG/CE=AD/AC=3/4,
∵BE:CE=1:2,
∴SΔABE=1/3SΔABC=20,
DG/BE=2×(DG/CE)=3/2,
∴DF/BF=DG/BE=3/2,
∴SΔADF=3/5SΔABD
=3/5×3/4SΔABC
=9/20×60
=27,
∴S四边形=SΔABC-SΔABE-SΔADF
=60-20-27
=13.
过D作DG∥BC交AE于G,
则DG/CE=AD/AC=3/4,
∵BE:CE=1:2,
∴SΔABE=1/3SΔABC=20,
DG/BE=2×(DG/CE)=3/2,
∴DF/BF=DG/BE=3/2,
∴SΔADF=3/5SΔABD
=3/5×3/4SΔABC
=9/20×60
=27,
∴S四边形=SΔABC-SΔABE-SΔADF
=60-20-27
=13.