已知A={a,b,c},B={-1,0,1},映射f:A→B满足f(a)+f(b)=f(c),求映射f:A→B的个数
2个回答
-1+0=-1
-1+1=0
1+0=1
以上加数可以互换
有6个
还有0+0=0
所以共有7个
相关问题
设集合A={a,b,c}B={-1,0,1},映射f:A→B满足f(a)-f(b)=f(c),求映射f:A→B的个数
设集合A={a,b,c},B={-1,0,1},映射f:A到B 满足f(a)-f(b)=f(c),求映射f:A到B的个数
已知A={a,b,c},B={-1,0,1},映射f:A-->B满足f(a)+f(b)=f(c),写出所有满足此映射的f
已知A={a,b,c},B={-1,0,1},映射f:A→B满足f(a)=f(b)+f(c).写出所有这样的映射f.
以知A={a,b,c},B={-1,0,1},映射f:A-B满足f(a)=f(b)+f(c).写出所有这样的映射f
已知A={a,b,c},B={-2,0,2},映射f:A→B满足f(a)+f(b)=f(c),求满
集合A={a.b.c}B={-1.0.1}从A到B的映射F满足F(a)=F(b)+F(c),那么这样的映射F的个数是几个
A={a,b,c},B={1,2},从A到B建立映射,使f(a)+f(b)+f(c)=4,则满足条件的映射个数是( )
已知集合M={a,b,c},N={-1,0,1},从M到N的映射f满足f(a)-f(b)=f(c),那么映射f的个数有几
集合A={a,b},B={-1,0,1},从A到B的映射f满足f(a)+f(b)=0,那么这样的映射f的个数有( )