1.设AB是椭圆X方/a方+y方/b方的不垂直于对称轴的弦,M为AB的中点,O为坐标原点,则AB与OM斜率的乘积为?

2个回答

  • (1)设AB坐标为(x1,y1)和(x2,y2),AB都在椭圆上

    所以x1²/a² + y1²/b² =1,x2²/a² + y2²/b² =1,两式相减得:

    (x1-x2)(x1+x2)/a² + (y1-y2)(y1+y2)/b² =0

    所以[(y1-y2)/(x1-x2)]*[(y1+y2)/(x1+x2)]=-b²/a²

    AB斜率k1=(y1-y2)/(x1-x2),OM斜率k2=[(y1+y2)/2]/[(x1+x2)/2]=(y1+y2)/(x1+x2)

    所以k1*k2=-b²/a²

    (2)设椭圆上关于直线y=4x+m的两个对称点为A(x1,y1)和B(x2,y2),

    设AB方程为x+4y+b=0与椭圆方程联立得:52y²+24by+3b²-12=0

    由韦达定理可知:y1+y2=-24b/52=-6b/13,y1y2=(3b²-12)/52

    设AB中点为M,则M点纵坐标(y1+y2)/2=-3b/13,

    横坐标(x1+x2)/2=(-4y1-b-4y2-b)/2=-2(y1+y2)-b=12b/13 -b=-b/13

    点M在直线y=4x+m上,所以(y1+y2)/2=4(x1+x2)/2 +m

    m=-3b/13 +2b/13=-b/13

    同时,要使一元二次方程52y²+24by+3b²-12=0有两相异实根

    需要判别式大于零,△=(24b)²-4*52(3b²-12)>0,解得-2√13