f(x)=(x^2+2x+1/2)/x可化简为f(x)=x+1/2x+2
令1≤x1≤x2,则f(x2)-f(x1)=x2+1/2x2-x1-1/2x1=(x2-x1)(1-1/2x1x2)
因x1≤x2,所以x2-x1>0,同时x1和x2都大于1,所以1/2x1x2<1,所以,1-1/2x1x2>0,因此,f(x2)-f(x1)>0,可见f(x)在[1,+∞)是增函数,且只有最小值,f(x)min=f(1)=7/2
f(x)=(x^2+2x+1/2)/x可化简为f(x)=x+1/2x+2
令1≤x1≤x2,则f(x2)-f(x1)=x2+1/2x2-x1-1/2x1=(x2-x1)(1-1/2x1x2)
因x1≤x2,所以x2-x1>0,同时x1和x2都大于1,所以1/2x1x2<1,所以,1-1/2x1x2>0,因此,f(x2)-f(x1)>0,可见f(x)在[1,+∞)是增函数,且只有最小值,f(x)min=f(1)=7/2