积分:(x^2)/(x^2+a^2)dx
=积分:[(x^2+a^2)-a^2]/(x^2+a^2)dx
=积分:[1-a^2/(x^2+a^2)]dx
=x-a^2/a*arctanx/a+C
=x-aarctanx/a+C
所以
积分:(0,1)(x^2)/(x^2+a^2)dx
=1-aarctan1/a-(0-aarctan0)
=1+pai/4-arctan1/a
积分:(x^2)/(x^2+a^2)dx
=积分:[(x^2+a^2)-a^2]/(x^2+a^2)dx
=积分:[1-a^2/(x^2+a^2)]dx
=x-a^2/a*arctanx/a+C
=x-aarctanx/a+C
所以
积分:(0,1)(x^2)/(x^2+a^2)dx
=1-aarctan1/a-(0-aarctan0)
=1+pai/4-arctan1/a