证明:
可以利用作差比较法
∵ |1+xy|²-|x+y|²
= (1+xy)²-(x+y)²
=1+2xy+x²y²-(x²+2xy+y²)
=1+x²y²-x²-y²
=1-x²+y²(x²-1)
=(1-x²)(1-y²)
∵ |x|≤1,|y|≤1
∴ 1-x²≥0,1-y²≥0
∴ (1-x²)(1-y²)≥0
∴ |1+xy|²-|x+y|²≥0
∴ |1+xy|²≥|x+y|²
∴ |x+y|≤|1+xy|
证明:
可以利用作差比较法
∵ |1+xy|²-|x+y|²
= (1+xy)²-(x+y)²
=1+2xy+x²y²-(x²+2xy+y²)
=1+x²y²-x²-y²
=1-x²+y²(x²-1)
=(1-x²)(1-y²)
∵ |x|≤1,|y|≤1
∴ 1-x²≥0,1-y²≥0
∴ (1-x²)(1-y²)≥0
∴ |1+xy|²-|x+y|²≥0
∴ |1+xy|²≥|x+y|²
∴ |x+y|≤|1+xy|