由题给条件可知:C是AB边的中点、P是中线OC的中点、OM/OB=m、ON/OA=n;
mn/(m+n)=1/[(1/m)+(1/n)]=1/[(OB/OM)+(OA/ON)]=OM*ON/(OB*ON+OA*OM)
=[(OM*ON*sinO)/2]/[(OB*ON*sinO)/2+(OA*OM*sinO)/2]
=S△OMN/(S△OAM+S△OBN);
S△OMN=S△OPM+S△OPN=m*S△OPB+n*S△OPC
=m*S△OBC/2 +n*S△OAC/2=[(m+n)/4]*S△OAB;
S△OAM=m*S△OAB,S△OBN=n*S△OAB;
∴ mn/(m+n)={[(m+n)/4]*S△OAB}/(m*S△OAB+n*S△OAB)=1/4;故选 C;