解题思路:设4个根分别为x1、x2、x3、x4,进而可知x1+x2和x3+x4的值,进而根据等差数列的性质,当m+n=p+q时,am+an=ap+aq.设x1为第一项,x2必为第4项,可得数列,进而求得m和n,则答案可得.
设4个根分别为x1、x2、x3、x4,
则x1+x2=2,x3+x4=2,
由等差数列的性质,当m+n=p+q时,am+an=ap+aq.
设x1为第一项,x2必为第4项,可得数列为[1/4],[3/4],[5/4],[7/4],
∴m=[7/16],n=[15/16].
∴|m-n|=[1/2].
故选C
点评:
本题考点: 等差数列的性质;一元二次不等式的解法.
考点点评: 本题主要考查了等差数列的性质.解题的关键是运用了等差数列当m+n=p+q时,am+an=ap+aq的性质.