首先:((n+1)^a-n^a) > 0
其次:((n+1)^a-n^a) = n^a[(1+1/n)^a-1]
由于0 < a < 1为常数,1+1/n > 0
所以(1+1/n)^a < 1+1/n
所以有:n^a[(1+1/n)^a-1] < n^a(1+1/n-1) = (n^a)/n = 1/n^(1-a)
而0 < a < 1为常数,所以当n趋于无穷大时,分母趋于无穷大,整个分式趋于零.
综合起来有:0 < ((n+1)^a-n^a) = n^a[(1+1/n)^a-1] < n^a(1+1/n-1) = (n^a)/n = 1/n^(1-a)
同时取极限,最右面与最左面的式子都趋于零,所以由夹逼定理,
lim((n+1)^a-n^a) = 0