[y1/(x1-1)][y2/(x2-1)]=-1
y1y2/[(x1-1)(x2-1)]=-1
y1y2=-(x1-1)(x2-1)=-(x1x2-x1-x2+1)
|PQ|=√[(y1-y2)²+(x1-x2)²]
=√(y1²-2y1y2+y2²+x1²-2x1x2+x2²)
=√(5-x1²+2x1x2-2x1-2x2+2+5-x2²+x1²-2x1x2+x2²)
=√[12-2(x1+x2)]
x1=-x2时,|PQ|min=√12=2√3
选B.
[y1/(x1-1)][y2/(x2-1)]=-1
y1y2/[(x1-1)(x2-1)]=-1
y1y2=-(x1-1)(x2-1)=-(x1x2-x1-x2+1)
|PQ|=√[(y1-y2)²+(x1-x2)²]
=√(y1²-2y1y2+y2²+x1²-2x1x2+x2²)
=√(5-x1²+2x1x2-2x1-2x2+2+5-x2²+x1²-2x1x2+x2²)
=√[12-2(x1+x2)]
x1=-x2时,|PQ|min=√12=2√3
选B.