1.解 ∵m为整数,且方程的两个根均为正整数
∴x1=2-3 /m 必为整数
∴m=±1或m=±3
当m=1时,x1=-1;当m=-1时,x1=5;
当m=3时,x1=1;当m=-3时,x1=3.
∴m=-1或m=±3.
2.
(1)∵二次函数y=(k2-1)x2-(3k-1)x+2的顶点在x轴上,
∴此函数的图象与x轴有一个交点,
∴ {k2-1≠0△=(3k-1)2-8(k2-1)=0,解得k=3;
(2)令(k2-1)x2-(3k-1)x+2=0,设二次函数与x轴的两个交点A、B为x1,x2,
∵A、B均为整数点,
∴x1,x2为整数,
∴x1•x2为整数,
∵x1•x2= 2k2-1,
∵k为整数,
∴k=0,
把k=0代入方程(k2-1)x2-(3k-1)x+2=0得,x2+x-2=0,
解得,x1=-1,x2=2.
∴A、B两点的坐标分别为(-1,0)、(2,0).
故答案为:k=1,A(-1,0)、B(2,0)3.