tanA+tanB=tan(A+B)(1-tanAtanB)
代入tanA+tanB+√3=√3tanAtanB
tan(A+B)(1-tanAtanB)+√3(1-tanAtanB)=0
[tan(A+B)+√3](1-tanAtanB)=0
若tan(A+B)+√3=0
tan(A+B)=-√3
A+B=2π/3
C=π-A-B=π/3
若1-tanAtanB=0
tanA=1/tanB=cotB=tan(π/2-B)
则A=π/2-B
A+B=π/2
则tan(A+B)无意义 舍去此解
选A