奇数的和=a1+a3+...+a(2n+1)=(n+1)*a1+(n+1)n*2d/2
=(n+1)(a1+nd)
偶数的和=a2+a4+...+a2n=n*a2+n(n-1)*2d/2
=n[a2+(n-1)d]=n[a1+d++(n-1)d]=n(a1+nd)
所以比是n+1:n
奇数的和=a1+a3+...+a(2n+1)=(n+1)*a1+(n+1)n*2d/2
=(n+1)(a1+nd)
偶数的和=a2+a4+...+a2n=n*a2+n(n-1)*2d/2
=n[a2+(n-1)d]=n[a1+d++(n-1)d]=n(a1+nd)
所以比是n+1:n