A
分析:根据三角形的内角和定理,平行四边形的判定定理,相似三角形的判定定理,等腰三角形的性质,等腰直角三角形的性质,配方法的应用对5个结论逐一分析即可.
①40°角为内角两个等腰三角形有2种情况,
一是顶角为40°的一个等腰三角形,二是底角为40°的一个等腰三角形,那么这两个三角形不相似,所以此结论不正确;
②高在内部时,顶角为30度,底角75度高在外部时,顶角的外角30度,底角15度.所以有2种情况:15度或75度,所以此结论不正确;
③一组对边平行,另一组对边相等的四边形也可以是梯形,所以此结论不正确;
④∵一个等腰直角三角形的三边是a、b、c,(a>b=c),
∴a为等腰直角三角形的斜边,
∴a 2=2b 2=2c 2
∴a 2:b 2:c 2=2:1:1;
∴此结论正确;
⑤∵a 2+b 2+c 2=10a+24b+26c-338,∴(a-5) 2+(b-12) 2+(c-13) 2=0,
∴a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13.
∵5 2+12 2=13 2,
∴△ABC是直角三角形.而不是等腰直角三角形.
∴此结论不正确;
因此命题正确的有1个.
故选A.