S(n) = 2^n-1,
a(n+1) = S(n+1) - S(n) = 2^(n+1) - 1 - 2^n+1 = 2^n,
a(1) = S(1) = 2-1=1.
a(n) = 2^(n-1), n = 1,2,...
[a(1)]^2 + [a(2)]^2 + ... + [a(n)]^2
= 1 + 2^2 + ... + [2^(n-1)]^2
= 1 + 4 + ... + 4^(n-1)
= [4^n - 1]/[4-1]
= [4^n - 1]/3.
S(n) = 2^n-1,
a(n+1) = S(n+1) - S(n) = 2^(n+1) - 1 - 2^n+1 = 2^n,
a(1) = S(1) = 2-1=1.
a(n) = 2^(n-1), n = 1,2,...
[a(1)]^2 + [a(2)]^2 + ... + [a(n)]^2
= 1 + 2^2 + ... + [2^(n-1)]^2
= 1 + 4 + ... + 4^(n-1)
= [4^n - 1]/[4-1]
= [4^n - 1]/3.