当X>时,有∫f(x)/xdx=ln(x+√(1+x^2))+c 求∫xf`(x)dx

3个回答

  • ∫ f(x)/x dx = ln[x + √(1 + x²)] + C

    f(x)/x = d/dx {ln[x + √(1 + x²)] + C} = 1/√(1 + x²)

    f(x) = x/√(1 + x²)

    -----------------------------------------------------------------

    ∫ x f'(x) dx

    = ∫ x df(x)

    = ∫ x d[x/√(1 + x²)]

    = ∫ x * 1/(x² + 1)^(3/2) dx

    = (1/2)∫ 1/(x² + 1)^(3/2) d(x² + 1)

    = (1/2) * (x² + 1)^(-3/2 + 1)/(-3/2 + 1) + C

    = -1/√(x² + 1) + C