解题思路:(1)易得A,C两点的坐标,设出一次函数解析式,把这两点代入可得所求函数解析式;
(2)分别以点O或点A为圆心,以OA长为半径画弧,可得3个可能的点P,作出OA的垂直平分线可得第4个点P;
(3)易得点O与点B关于直线l对称,那么连接BD,与l的交点即为点E,得到DB的解析式与l的解析式联立可得E的坐标.
(1)设直线l的函数表达式y=kx+b(k≠0),经过A(4,0)和C(0,4)得
0=4k+b
4=b,
解之得
k=−1
b=4,
∴直线l的函数表达式y=-x+4;
(2)P1(0,4)、P2(2,2)、P3(4−2
2,2
2)、P4(4+2
2,−2
2);
(3)∵O与B关于直线l对称,
∴连接DB,交AC于点E,则点E为所求,此时OE+DE取得最小值,
设DB所在直线为y=k1x+b1(k1≠0),经过点D(0,2)、B(4,4)
4=4k1+b1
2=b1,
解得
k1=
1
2
b1=2
∴直线DB为y=
1
2x+2,
解方程组:
y=−x+4
y=
1
2x+2,得
x=
4
3
y=
8
3,
∴点E的坐标为(
4
3,
8
3).
点评:
本题考点: 一次函数综合题.
考点点评: 考查一次函数的应用;在本题中应注意可能为等腰三角形的不同情况;在求平面图形中的最短距离和时,应找到特殊点关于直线的对应点.