解题思路:根据已知可知:该二次函数顶点坐标是(3,0)、该函数经过点(0,-1);所以设该函数解析式为y=a(x-3)2(a为常数,且a≠0),将点(0,-1)代入求解即可.
∵二次函数的图象的对称轴是x=3,函数的最大值是0,
∴该二次函数顶点坐标是(3,0),
故设该二次函数的解析式为:y=a(x-3)2(a为常数,且a≠0),
∵该函数在y轴上的截距是-1,
∴该函数经过点(0,-1),
∴把x=0,y=-1代入上式,得
9a=-1,即a=-[1/9],
∴这个二次函数解析式为y=-[1/9](x-3)2.
点评:
本题考点: 待定系数法求二次函数解析式.
考点点评: 本题主要考查的是二次函数解析式的求法.在解答时,要认真挖掘隐含在题干中的已知条件,根据已知条件来解答.