作出函数y=-sinx,x∈[-π,π]的简图,并回答下列问题:(1)观察函数图象,写出满足下列条件的x的区间:①sin
2个回答
1.把y=sinx的图像倒过来.定义域是-π到π.sinx大于0的区间是(-π,0)小于0的区间是(0,π)
2.sinx的最大值为1.根据图像可得有两个公共点.
相关问题
用五点法作出函数y=2sin(2x+[π/3])的图象,并指出函数的单调区间.
画函数y=3sin(2x+[π/3]),x∈R简图,并说明此函数图象怎样由y=sinx变换而来.
利用函数y=sinx(0≤x≤2π)的图像作出函数y=|tanx|*cosx(0≤x≤3π/2且x≠π/2)的简图
(2007•海南)函数y=sin(2x−π3)在区间[−π2,π]的简图是( )
作出下列函数图象并指出单调区间 y=|log1/2 x|
f(x)=sinx-x判断下列函数的单调性,并求出单调区间.f(x)=sinx-x,x∈[0,π],x∈(0,π)
给出下列命题:①函数 y=sin( 5π 2 -2x) 是偶函数;②函数 y=sin(x+ π 4 ) 在闭区间 [-
已知函数f(x)=2sinx(sinx+cosx)画出y=f(x)在区间[-π/2,π/2]上的图象
画出函数y=1-sinx,x∈[0,2π]的图象.