f(x) = log a (x+b)/(x-b) = log a (x-b+2b)/(x-b) = log a { 1+2b/(x+b) } = log a { 1+2/(x/b+1) }
x∈(-∞,-b)时,x/b单调减, 1+2/(x/b+1)单调增,
其中当0<a<1时,f(x)单调减;当a>1时,f(x)单调增
x∈(b,+∞)时,x/b单调增, 1+2/(x/b+1)单调减,
其中当0<a<1时,f(x)单调增;当a>1时,f(x)单调减
f(x) = log a (x+b)/(x-b) = log a (x-b+2b)/(x-b) = log a { 1+2b/(x+b) } = log a { 1+2/(x/b+1) }
x∈(-∞,-b)时,x/b单调减, 1+2/(x/b+1)单调增,
其中当0<a<1时,f(x)单调减;当a>1时,f(x)单调增
x∈(b,+∞)时,x/b单调增, 1+2/(x/b+1)单调减,
其中当0<a<1时,f(x)单调增;当a>1时,f(x)单调减