已知数列bn=K^(2n-1)+2n,求数列{bn}的前n项和Tn.
1个回答
Tn=b1+b2+…+bn=[k+k^3+k^5+…+K^(2n-1)]+2(1+2+…+n)
=k[k^(2n)-1]/(k^2-1)+n(n+1)
相关问题
已知bn=(n+n^2)/2^n,求数列bn的前n项和Tn
已知数列an的前n项和sn=n^2+pn,数列bn的前n项和Tn=2bn-1,求数列{an*bn}的前n项和Mn
已知数列{an}前n项和Sn=n^2+n,令bn=1/an*a(n+1),求数列{bn}的前n项和Tn
数列求和数列bn=[(-1)^n]*n^2,求前n项和Tn
数列bn满足bn=2的n次方+2n(n=1,2...)求数列bn的前n项和Tn
设bn=(2n-1)/(2^n),求数列{bn}的前n项和Tn.
数列{bn}满足bn=(2n-1)/3^n,求前n项和,Tn
【高三数学】已知数列{an}的前n项和Sn=2n*n+2n,数列{bn}的前n项和Tn=2-bn.
数列bn的前n项和为Tn,6Tn=(3n+1)bn+2,求bn
已知数列an的前n项和为sn=2n^2+5n+1,数列bn的前n项和tn满足Tn=(3/2)bn-3/2