(2012•宿州三模)定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f

1个回答

  • 解题思路:首先理解题目f(x)定义在R上的偶函数,则必有f(x)=f(-x),又有关系式f(x+1)=-f(x),两个式子综合起来就可以求得周期了.再根据周期函数的性质,且在[-1,0]上是增函数,推出单调区间即可.

    ∵定义在R上的偶函数f(x)满足f(x+1)=-f(x),

    ∴f(x)=-f(x+1)=-[-f(x+1+1)]=f(x+2),

    ∴f(x)是周期为2的函数,则①正确.

    又∵f(x+2)=f(x)=f(-x),

    ∴y=f(x)的图象关于x=1对称,②正确,

    又∵f(x)为偶函数且在[-1,0]上是增函数,

    ∴f(x)在[0,1]上是减函数,

    又∵对称轴为x=1.

    ∴f(x)在[1,2]上为增函数,f(2)=f(0),

    故③④错误,⑤正确.

    故答案应为①②⑤.

    点评:

    本题考点: 函数的周期性;函数的单调性及单调区间.

    考点点评: 此题主要考查偶函数及周期函数的性质问题,其中涉及到函数单调性问题.对于偶函数和周期函数是非常重要的考点,需要理解记忆.