都有[f(a)+f(b)]/(a+b)>0.⑴若a>b,试比较f(a)与f(b)的大小;⑵解不等式f(x-1/2)0
故:a-T≠0时,
有:[f(a)+f(-T)]/[a+(-T)]>0
又f(x)是奇函数
则有:f(-T)=-f(T)
则:[f(a)-f(T)]/[a-T]>0
即:[a-T]与[f(a)-f(T)]同号
即:a>T时,恒有f(a)>f(T)
af(b)
(2)由于:
f(x-1/2)
都有[f(a)+f(b)]/(a+b)>0.⑴若a>b,试比较f(a)与f(b)的大小;⑵解不等式f(x-1/2)0
故:a-T≠0时,
有:[f(a)+f(-T)]/[a+(-T)]>0
又f(x)是奇函数
则有:f(-T)=-f(T)
则:[f(a)-f(T)]/[a-T]>0
即:[a-T]与[f(a)-f(T)]同号
即:a>T时,恒有f(a)>f(T)
af(b)
(2)由于:
f(x-1/2)