解题思路:本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.
依题意得:(80+2x)(50+2x)=5400,
即4000+260x+4x2=5400,
化简为:4x2+260x-1400=0,
即x2+65x-350=0.
故选:B.
点评:
本题考点: 由实际问题抽象出一元二次方程.
考点点评: 本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简.
解题思路:本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.
依题意得:(80+2x)(50+2x)=5400,
即4000+260x+4x2=5400,
化简为:4x2+260x-1400=0,
即x2+65x-350=0.
故选:B.
点评:
本题考点: 由实际问题抽象出一元二次方程.
考点点评: 本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简.