设 x=acosθ,y=bsinθ ,则 x'=-asinθ,y'=bcosθ ,
x'^2+y'^2=a^2sin^2θ+b^2cos^2θ)
椭圆周长=∫(θ从0到2π)根号[a^2sin^2θ+b^2cos^2θ]dθ
=4∫(θ从0到π/2)根号[a^2sin^2θ+b^2cos^2θ]dθ
=4∫(θ从0到π/2)bcosθ根号[a^2tan^2θ/b^2+1]dθ
【 设(atanθ)/b=tanψ ,asec^2θdθ=bsec^2ψdψ]
原式=4∫(ψ从0到π/2)b^2cos^3θ/acos^3ψdψ