解题思路:物体在水平传送带上先做匀加速直线运动,达到传送带速度后做匀速直线运动,在倾斜传送带上,由于重力沿斜面方向的分力大于滑动摩擦力,所以物体做匀加速直线运动,根据牛顿第二定律求出在水平传送带和倾斜传送带上的加速度,结合运动学公式进行求解.
物体A轻放在a点后在摩擦力作用下向右做匀加速直线运动直到和传送带速度相等.在这一过程中有a1=[μmg/m]=μg
x1=
v2
2a=
v2
2μg=0.8 m<ab.
经历时间为t1=[v
a1=
2/2.5]=0.8 s.
此后随传送带运动到b点的时间为t2=
xab−x1
v=
2−0.8
2=0.6 s.
当物体A到达bc斜面时,由于mgsin 37°=0.6mg>μmgcos 37°=0.2mg.所以物体A将再次沿传送带做匀加速直线运动,
其加速度大小为a2=gsin 37°-μgcos 37°=4 m/s2,
物体A在传送带bc上所用时间满足xbc=vt3+[1/2]a2t
23,代入数据得t3=1 s.(负值舍去)
则物体A从a点被传送到c所用时间为t=t1+t2+t3=2.4 s.
答:物体A从a点被传送到c点所用的时间为2.4s.
点评:
本题考点: 牛顿第二定律;匀变速直线运动的位移与时间的关系.
考点点评: 解决本题的关键理清物体在传送带上整个过程中的运动规律,结合牛顿第二定律和运动学公式进行求解,难度中等.