令U=tan(x/2)
sinx=2u/(1+u^2)
cosx=(1-u^2)/(1+u^2)
dx=2/(1+u^2)du
我就举一个例子 sinx=sinx/1 (*) (sinx=2sin(x/2)cos(x/2) 1=sin(x/2)^2+cos(x/2)^2
带入(*)后,分子分母同除以cos(x/2)^2 就得到sinx=2u/(1+u^2)
令U=tan(x/2)
sinx=2u/(1+u^2)
cosx=(1-u^2)/(1+u^2)
dx=2/(1+u^2)du
我就举一个例子 sinx=sinx/1 (*) (sinx=2sin(x/2)cos(x/2) 1=sin(x/2)^2+cos(x/2)^2
带入(*)后,分子分母同除以cos(x/2)^2 就得到sinx=2u/(1+u^2)