(1)a 1=-
. a 2=
(2)见解析(3)
(1)由3S 1=a 1-1,得3a 1=a 1-1,∴a 1=-
.
又3S 2=a 2-1,即3a 1+3a 2=a 2-1,得a 2=
.
(2)证明:当n≥2时,a n=S n-S n -1=
(a n-1)-
(a n -1-1),得
,所以{a n}是首项为-
,公比为-
的等比数列.
(3)由(2)可得a n= n,S n=
.
(1)a 1=-
. a 2=
(2)见解析(3)
(1)由3S 1=a 1-1,得3a 1=a 1-1,∴a 1=-
.
又3S 2=a 2-1,即3a 1+3a 2=a 2-1,得a 2=
.
(2)证明:当n≥2时,a n=S n-S n -1=
(a n-1)-
(a n -1-1),得
,所以{a n}是首项为-
,公比为-
的等比数列.
(3)由(2)可得a n= n,S n=
.