DP=y ①
△BCD为RT三角形
故BD=√2,BP=√2-y ②
△ABE为RT三角形
故BE2=x2+1
△BEP为RT三角形
故EP=√[(√2-y)^2-x^2-1] ③
PF=√(x^2+1) - √[(√2-y)^2-x^2-1] ④
∠BPE=∠FPD
∠BEP=∠FDP
则△BPE∽△FPD
EP/DP=BP/PF
EP×PF=DP×BP ⑤
将①②③④代入⑤,得
√[ (√2-y)^2-x^2-1 ]×(√(x^2+1) - √[(√2-y)^2-x^2-1])=y×(√2-y)
√[ (1-2√2y+y^2-x^2)(x^2+1) ]=√2y-y^2+1-2√2y+y^2-x^2
等号两边平方,得
(1-2√2y+y^2-x^2)(x^2+1)=(1-√2y-x^2)^2
x^2-2√2(x^2)y+x^2y^2-x^4+1-2√2y+y^2-x^2=1+2(y^2)+x^4-2√2y-2(x^2)+2√2(x^2)y
化简得
(1-x^2)(y^2)+4√2(x^2)y+2(x^4)-2(x^2)=0
化简得
y=√2x(1+x)/(1-x)
因为AD=1
所以0≤x≤1
方程为y=√2x(1+x)/(1-x) (0≤x≤1)