证明:f(1/n)=1/n-3/(2n²)=(2n-3)/(2n²),f(1/n)-1/(n+1)=-(n+3)/(2n³+2n²)<0,即f(1/n)<1/(n+1)
因为x=1/3是f(x)的对称轴,且f(x)在(-∞,1/3]上递增,在(1/3,+∞)上递减,所以
当0<a1≤1/3时,a2=f(a1)≤f(1/3)=1/6<1/3;
当1/3<a1<1/2时,a2=f(a1)<f(1/2)=1/8<1/3,
a3=f(a2)<f(1/3)<1/4,同理,an<1/(n+1)得证
这题只要证明a2小于1/3,然后f(x)在(-∞,1/3]上递增,后面就理所当然的成立了.