答:
f(x)=√3sinxcosx-cos²x
=(√3/2)sin2x-(cos2x+1)/2
=sin(2x-π/6)-1/2
所以:f(x)的最小正周期T=2π/2=π
(1)
对称轴在sin(2x-π/6)=1或者sin(2x-π/6)=-1处取得
所以:2x-π/6=π/2,x=π/3
所以:对称轴x=kπ/2+π/3
(2)对称中心在sin(2x-π/6)=0处取得,2x-π/6=0,x=π/12
所以:对称中心为(kπ/2+π/12,-1/2)
答:
f(x)=√3sinxcosx-cos²x
=(√3/2)sin2x-(cos2x+1)/2
=sin(2x-π/6)-1/2
所以:f(x)的最小正周期T=2π/2=π
(1)
对称轴在sin(2x-π/6)=1或者sin(2x-π/6)=-1处取得
所以:2x-π/6=π/2,x=π/3
所以:对称轴x=kπ/2+π/3
(2)对称中心在sin(2x-π/6)=0处取得,2x-π/6=0,x=π/12
所以:对称中心为(kπ/2+π/12,-1/2)