第一问是[0,π/2]吧?以下sqrt为开方.
f(x) = x + 2cos(x),求导:
f'(x) = 1 - 2sin(x).
第一问:在[0,π/2]上,x小于30度时导数为正,函数递增;大于30度时导数为负,函数递减.所以最大值在x = 30度时取到,答案是f(π/6) = π/6 + sqrt(3);
第二问,在[0,2π]上,导数的零点有两个,一个是x = π/6时取到,且为一个局部极大值;另一个是x = 5π/6取到,函数的单调性为:
[0,π/6],导数为正,函数单调递增;
(π/6,5π/6],导数为负,函数单调递减;
(5π/6,2π],导数为正,函数单调递增.
因此,最大值要比较两个点,一个是π/6处,一个是2π处,由于f(2π) = 2π + 2 > f(π/6),所以第二问答案是:2π + 2;
第三问,不知你问的哪个区间.
不过确定的是,函数在[-π/2,π/6)上都是正的,是单调递增,如果能够取到π/6,那么最大值就是f(π/6).总之,如果该问的区间包括2π,那么最大值就是和第二问一样,如果不包括,你自己用导数判断下吧,很容易的.