设圆心O坐标为(X,Y),圆心到ABC三点距离相等为圆的半径R
则OA=OB=OC=R
OA^2=OB^2=OC^2
(X+2)^2+(Y-4)^2=(X+1)^2+(Y-3)^2=(X-2)^2+(Y-6)^2=R^2
求出X-Y=-5
2X+Y=5
X=0 Y=5
R^2=4+1=5 R=√5
所以圆为X^2+(Y-5)^2=5
设圆心O坐标为(X,Y),圆心到ABC三点距离相等为圆的半径R
则OA=OB=OC=R
OA^2=OB^2=OC^2
(X+2)^2+(Y-4)^2=(X+1)^2+(Y-3)^2=(X-2)^2+(Y-6)^2=R^2
求出X-Y=-5
2X+Y=5
X=0 Y=5
R^2=4+1=5 R=√5
所以圆为X^2+(Y-5)^2=5