解题思路:分别取AC、BC中点M、N,连接MD、ND,再连接EM、FN,利用在直角三角形中:直角三角形斜边上的中线等于斜边的一半和已知条件证明四边形MDNC为平行四边形,再利用平行四边形的性质和已知条件证明△EMD≌△DNF即可.
证明:分别取AC、BC中点M、N,连接MD、ND,再连接EM、FN,
∵D为AB中点,∠AEC=90°,∠BFC=90°,
∴EM=[1/2]AC,FN=[1/2]BC,
∵D是△ABC中AB边上的中点,
∴DN是△ABC的中位线.
∴DN=[1/2]AC,
∴EM=DN=[1/2]AC,FN=MD=[1/2]BC,
∵DN∥CM且DN=CM,
∴四边形MDNC为平行四边形,
∴∠CMD=∠CND.
∵∠EMC=∠FNC=90°,
∴∠EMC+∠CMD=∠FNC+∠CND,
即∠EMD=∠FND,
∴△EMD≌△DNF(SAS).
∴DE=DF.
点评:
本题考点: 平行四边形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线.
考点点评: 本题考查了平行四边形的判定和性质、全等三角形的判定和性质以及直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,题目难度中等综合性不小.