解题思路:根据折叠图形的对称性,易得△EDF≌△EAF,运用中位线定理可知△AEF的周长等于△ABC周长的一半,进而△DEF的周长可求解.
∵△EDF是△EAF折叠以后形成的图形,
∴△EDF≌△EAF,
∴∠AEF=∠DEF,
∵AD是BC边上的高,
∴EF∥CB,
又∵∠AEF=∠B,
∴∠BDE=∠DEF,
∴∠B=∠BDE,
∴BE=DE,
同理,DF=CF,
∴EF为△ABC的中位线,
∴△DEF的周长为△EAF的周长,即AE+EF+AF=[1/2](AB+BC+AC)=[1/2](12+10+9)=15.5.
故选D.
点评:
本题考点: 三角形中位线定理;翻折变换(折叠问题).
考点点评: 本题考查了中位线定理,并涉及到图形的折叠,认识到图形折叠后所形成的图形△AEF与△DEF全等是解题的关键.