13 . (主要的是一步步化简下去,不要嫌麻烦)
由tanA=-tan(B+C)=-(tanB+tanC)/(1-tanBtanC), 设tanB=x,tanC=y
得tanAtanB=(x^2+xy)/(xy-1)
tanCtanA=(x+y^2)/(xy-1)
又tanAtanB+tanBtanC=(x^2+xy)/(xy-1)+xy=[x^2+xy+(x^2) *(y^2)-xy]/(xy-1)=[x^2+(x^2) *(y^2)]/(xy-1)
所以原式=[x^2+(x^2)*(y^2)]/(x+y^2)
即原式等于(tanB的平方+tanB的平方tanC的平方)/(tanB+tanC的平方)