13、化简:(1)3√15sinx+3√5cosx (2)3/2cosx-√3/2sinx (3)√3sinx/2+co

1个回答

  • 1)3√15sinx+3√5cosx

    =6√5(√3/2sinx+1/2cosx )

    =6√5sin(x+π/3)

    2)3/2cosx-√3/2sinx

    =√3(√3/2cosx-1/2sinx )

    =√3cos(x+π/6)

    3)√3sinx/2+cosx/2

    =2(√3/2sinx/2+1/2cosx/2 )

    =2sin(x/2+π/6)

    4)√2/4sin(π/4-x)+√6/4cos(π/4-x)

    =√2/2[1/2sin(π/4-x)+√3/2cos(π/4-x) ]

    =√2/2sin(5π/12-x)

    5)sin347°cos148°+sin77°cos58°

    =sin13°cos32°+cos13°sin32°

    =sin50°

    6)sin164°sin234°+sin254°sin314°(题有误应该是sin234°)

    =-sin16°sin54°+sin74°sin46°

    =-sin16°sin54°+cos16°cos54°

    =cos70°

    7)sin(a+b)cos(γ-b)-cos(b+a)sin(b-γ)

    =sin(a+b)cos(γ-b)+cos(b+a)sin(γ-b)

    =sin(a+b+γ-b)

    =sin(a+γ)

    8)sin(a-b)cos(b-γ)-cos(a-b)sin(γ-b)

    =sin(a-b)cos(γ-b)-cos(a-b)sin(γ-b)

    =sin(a-b-γ+b)

    =sin(a-γ)

    9)tan5π/4+tan5π/12 / 1-tan5π/12

    =tanπ/4+tan5π/12 / 1-tan5π/12

    =(tanπ/4+tan5π/12) / (1-tanπ/4*tan5π/12 )

    =tan(π/4+5π/12)

    =tan2π/3

    =-√3

    10)sin(a+b)-2sinacosb) / 2sinasinb+cos(a+b)

    =[sinacosb+cosasinb-2sinacosb]/[cosacosb-sinasinb+ 2sinasinb]

    =(cosasinb-sinacosb)/(cosacosb+sinasinb)

    =sin(b-a)/cos(b-a)

    =tan(b-a)