先证N=2
1/a1a2+1/a2a3=n/a1a3
a3+a1=2a2
证得在N=2时1~3成立
假设N=k-1成立
N=k时:
两式子左右相减:
1/akak+1=k/a1a(k+1)-(k-1)/a1ak
kak-a1=(k-1)ak+1
设ak=a1+(k-1)d
(ka1+k(k-1)d-a1)/(k-1)=a(k+1)=a1+kd
即a(k+1)也是等差数列一员,N=k证毕
以上.
先证N=2
1/a1a2+1/a2a3=n/a1a3
a3+a1=2a2
证得在N=2时1~3成立
假设N=k-1成立
N=k时:
两式子左右相减:
1/akak+1=k/a1a(k+1)-(k-1)/a1ak
kak-a1=(k-1)ak+1
设ak=a1+(k-1)d
(ka1+k(k-1)d-a1)/(k-1)=a(k+1)=a1+kd
即a(k+1)也是等差数列一员,N=k证毕
以上.