Xn+1 =( √2* Xn)/ (√Xn^2+2)
Xn+1^2=2* Xn^2/ (Xn^2+2)
1/X(n+1)^2=(1/2)*(1+2/Xn^2)=1/2+1/Xn^2
所以{1/Xn^2}为等差数列,公差为1/2,首项为:1/X1^2=1
所以:
1/Xn^2=1+(n-1)*1/2=(n+1)/2
Xn^2=2/(n+1)
Xn=√[2/(n+1)]
(因为Xn+1 (n+1为下标)=( √2* Xn)/ (√Xn^2+2),负舍)
Xn+1 =( √2* Xn)/ (√Xn^2+2)
Xn+1^2=2* Xn^2/ (Xn^2+2)
1/X(n+1)^2=(1/2)*(1+2/Xn^2)=1/2+1/Xn^2
所以{1/Xn^2}为等差数列,公差为1/2,首项为:1/X1^2=1
所以:
1/Xn^2=1+(n-1)*1/2=(n+1)/2
Xn^2=2/(n+1)
Xn=√[2/(n+1)]
(因为Xn+1 (n+1为下标)=( √2* Xn)/ (√Xn^2+2),负舍)