2y'-y=e^x的通解
2dy-ydx=e^xdx==>dy-ydx/2=e^xdx/2==>e^(-x/2)dy-e^(-x/2)ydx/2=e^"}}}'>

1个回答

  • ∵2y'-y=e^x

    ==>2dy-ydx=e^xdx

    ==>dy-ydx/2=e^xdx/2

    ==>e^(-x/2)dy-e^(-x/2)ydx/2=e^(x/2)dx/2 (等式两端同乘e^(-x/2))

    ==>e^(-x/2)dy+yd(e^(-x/2))=d(e^(x/2))

    ==>d(ye^(-x/2))=d(e^(x/2))

    ==>ye^(-x/2)=e^(x/2)+C (C是常数)

    ==>y=e^x+Ce^(x/2)

    ∴原方程的通解是y=e^x+Ce^(x/2).