原式=xln(1+x²)-∫xdln(1+x²)
=xln(1+x²)-∫2x²/(1+x²)dx
=xln(1+x²)-2∫(x²+1-1)/(1+x²)dx
=xln(1+x²)-2∫[1-1/(1+x²)]dx
=xln(1+x²)-2∫dx+2∫1/(1+x²)dx
=xln(1+x²)-2x+2arctanx+C
原式=xln(1+x²)-∫xdln(1+x²)
=xln(1+x²)-∫2x²/(1+x²)dx
=xln(1+x²)-2∫(x²+1-1)/(1+x²)dx
=xln(1+x²)-2∫[1-1/(1+x²)]dx
=xln(1+x²)-2∫dx+2∫1/(1+x²)dx
=xln(1+x²)-2x+2arctanx+C