求下列不定积分.(1)∫[1/(x+1)^2 (x^2+1)]dx (2) ∫[1/(2+sinx)]dx (3) ∫[

1个回答

  • 答:

    1.原式

    =∫[(x+2)/[2(x+1)^2]-x/[2(x^2+1)] dx

    =1/2*∫[(x+1+1)/(x+1)^2-x/(x^2+1) dx

    =1/2*∫(1/(x+1)+1/(x+1)^2-x/(x^2+1))dx

    =1/2*[ln|x+1|-1/(x+1)-1/2*ln(x^2+1)]+C

    =1/2*ln|(x+1)/√(x^2+1)|-1/2(x+1)+C

    2.原式

    =1/2*∫1/(1+1/2*sinx)dx

    令t=tan(x/2),则sinx=2t/(1+t^2),cosx=(1-t^2)/(1+t^2),dx=2dt/(1+t^2)

    =∫dt/(1+t+t^2)

    =4/3*∫1/{[(2t+1)/√3]^2+1}

    =4/3*√3/2*arctan[(2t+1)/√3]+C

    =2/√3*arctan[(2tan(x/2)+1)/√3]+C

    上面这个结果可以化简.所以答案形式不唯一.

    3.原式

    =∫(1+sinx-1)/(1+sinx)dx

    =∫1-1/(1+sinx)dx

    =∫1-1/(1+cos(x-π/2))dx

    由cos2t=2(cost)^2-1可得:

    =∫1-1/(1+2[cos(x/2-π/4)]^2-1)dx

    =∫1-1/2cos(x/2-π/4)^2 dx

    =x-tan(x/2-π/4)+C

    化简得:

    =x+cosx/(1+sinx)+C

    注:第二题也可以令sinx=cos(x-π/2),然后按照《吉米多维奇数学分析习题集》(第三版)第2028题解法.