[3/(sin140°)^2-1/(cos140°)^2]*1/sin10°
=[3(cos40°)^2-(sin40°)^2]/(sin40°cos40°)^2*1/sin10°
=4(1+2cos80°)/[(sin80°)^2*sin10°]
=4(1+2sin10°)/[(cos10°)^2*sin10°]
=8(1+2sin10°)/(sin20°cos10°)
=16(1+2sin10°)/(sin30°+sin10°)
=32.
[3/(sin140°)^2-1/(cos140°)^2]*1/sin10°
=[3(cos40°)^2-(sin40°)^2]/(sin40°cos40°)^2*1/sin10°
=4(1+2cos80°)/[(sin80°)^2*sin10°]
=4(1+2sin10°)/[(cos10°)^2*sin10°]
=8(1+2sin10°)/(sin20°cos10°)
=16(1+2sin10°)/(sin30°+sin10°)
=32.